
Web Service Discovery: Dealing With Natural
Language Requests and User Preferences

Philippe Larvet
Alcatel-Lucent France

Research and Innovation Centre
Route de Nozay

F-91461 MARCOUSSIS CEDEX
Email : Philippe.Larvet@alcatel-lucent.fr

Nomane Ould Ahmed M’bareck and Samir Tata
GET/INT, CNRS UMR SAMOVAR

9 rue Charles Fourier
91011 Evry Cedex France

Email : {Nomane.Ould ahmed mbarek,Samir.Tata}@int-evry.fr

Abstract— Web services aim at providing standard means
to promote interoperability and extensibility among software
applications, as well as to allow them to be composed in order to
perform more complex operations. An important step towards
this goal is service description and discovery. In this paper
we propose an approach to deal with this important step.
Our approach consists in i) a technique for translating user’s
requests written in natural language into semantic and formal
descriptions, ii) enables users to express their preferences on the
parts of their requests, and iii) providing a matching algorithm
that can handle semantic description and user preferences.

I. INTRODUCTION

Web services provide a standard means to promote inter-
operability and extensibility among software applications, as
well as to allow them to be composed in order to perform
more complex operations. To do so, several approaches have
been developed to describe services, publish these services
into registries, discover them using matchmaking algorithms,
bind and compose them. The key issue within this process is
the way to better describe and discover web services in order
to enhance their invocation and composition.

In this context, we propose to integrate and extend existing
results to describe and better discover web services. In fact,
the aim of this paper is to show how to discover a service
fitting with a request expressed in the preferred language of
the end-user: the natural language (NL).

One way to reach this objective is to be able to transform
the original NL request into a formal need for a ”requested
service”, expressed as a formal description of an in demand
service. In addition, we propose to take into account re-
quester’s preferences in the process of service discovery. By
requester’s preferences we mean the degree of importance the
requester assigns to the different elements of his query. The
user could want to express in his query, for example, the fact he
provides some inputs, requires - as a demand - some outputs,
and he desires -as a simple wish - some others. In addition, we
aim at providing matching mechanisms that focus not only on
the inheritance relationship between the requests’ concepts and
the concepts used by services, but also to consider rhetorical
relationships between them.

This paper is organized as follows. In Section II we summa-
rize our approach and present requirements to consider natural
language query processing as well as requester’s preferences
in service discovery are identified. Section III presents our
method to process natural language queries in order to formal-
ize user requests into SAWSDL descriptions. Formal semantic
description of services, requests and preferences are presented
in Section IV. Section V presents our matching algorithm that
considers requester’s preferences and not only inheritance re-
lation but also rhetorical relations between ontology concepts.
Section VI presents related work and approaches that inspired
our work. Section VII concludes this paper and presents future
work.

II. REQUIREMENTS

In the following we try to draw up some requirements that
matching tools should take into account namely : translation of
user’s requests written in natural language into formal descrip-
tion like SAWSDL, consideration of inheritance and rhetoric
relations between concepts during the matching process and
finally dealing with the requester’s preferences.

A. Natural Language Query Processing

One of the aims of this paper is to show how to discover a
service fitting with a end-user NL-expressed request. One way
to reach this objective is to transform the original NL request
into a formal need for a ”requested service”, expressed as a
formal description of a service. This formal description will
be afterwards matched with the content of a service repository,
with the help the algorithm we will present in Section V.

The result of the matching process will indicate whether the
matching ”discovered” service fits or not with the semantics
of the original NL request. So, considering in one hand the
service repository, containing formal descriptions of services
expressed in SAWSDL [15] and, in the other hand, the
matching algorithm working with SAWSDL descriptions, a
logic way could be to transform the informations contained in
the original NL request into a formal SAWSDL description.
We will show this process in Section III.



B. Formal Semantic Description

We consider in this paper that Web services and service
requests are defined using ontology-based descriptions. Indeed
several works(e.g. [12], [4], [16]) have underlined many lim-
itations of syntactical-based descriptions and needs of using
ontology-based descriptions. Ontology is specification of a
conceptualization of a knowledge and specified domain of
interest. It controls the concepts and their properties and
relations within a structure. Two types of concept relations
are defined: inheritance and rhetoric. Inheritance is a directed
relationship between two concepts (parent and child) in which
the child concept inherits the properties of the parent concept.
Only the properties which are different need to be described in
the child concept. Rhetorical relation is a directed relationship
between two concepts in which one concept has a property
defined by another one.

Describing Web services using ontology will enhance ser-
vice discovery. The “quality” of that discovery depends on
the used algorithms and techniques. In order to improve the
discovery, the matching algorithms have to take into account
rhetorical and inheritance relations. In fact, a majority of
existing algorithms only deal with inheritance. This allows
getting a certain degree of similarity between a child concept
and its parent, since the child inherits the properties of its
parent. For example there is a certain degree of similarity,
which has to be defined, between the Visa and Payment
concepts. Matching algorithms should in addition take into
account the rhetorical relation between concepts.

C. Dealing with the requester’s preferences

The last but not least requirement we deal with in this
paper concerns the requester’s preferences that have to be
associated with requests. Indeed, when a requester for Web
Services formulates his request, he should get the means to
specify that an element in his request is more important than
another one. Moreover, matching algorithm must be able to
take these preferences into account during the matching rather
than during the ranking of matching results as it is done
by many other approaches. For example, if more than one
matching Web Service is found, WSMX [3] selects the most
suitable one based on preferences provided by the service
requester. Here we want to include preferences of the requester
into the matching process.

III. NATURAL LANGUAGE QUERY PROCESSING

As exposed in Section II, the aim of the natural language
(NL) query processing is to derive a formal description of a
”need for a requested service” from a request expressed in the
preferred language of the end-user: the natural language. The
obtained formal description, expressed in SAWSDL, will be
afterwards matched with the content of a service repository,
with the help of the algorithm presented in Section V.

A. Natural Language Processing Strategy

Natural language processing could require a proper knowl-
edge base describing semantically the service repository where

the concepts are, internally or externally, linked to lexical re-
sources pertaining to one or more languages (English, French,
Italian, etc.) in order to allow the recognition of named entities
within the text. Different approaches in literature propose the
modeling of such a knowledge base at different detail levels
and according to different strategies depending on the level
of NL processing required: parse trees, dependency graphs,
composed ontologies [8] or simply named entities recognition.

Key elements of this semantic repository are goals, pre-
conditions, effects and quality of service (QoS) of operations
exposed by the services, as well as input and output semantic
types of parameters defined in their interfaces.

The principles of our process is to extract from the NL
request the main need of the requested service, the inputs
and outputs of this service, and to put these elements in
correspondence with external adequate ontologies in order to
generate a pertinent SAWSDL description of the requested
service.

The proposed process can be divided into four steps: Ex-
tracting main need of service, Parameter extraction, Parameter
priorization and Service identification.

Extracting main need of service consists in processing the
NL request in order to extract the need of service. A good
strategy is here to use a simple lexical/grammatical analysis
of the NL request, in order to extract the main ”request
concepts” as the canonical form of pertinent used terms,
after elimination of non-pertinent words. The pertinent kept
concepts are afterwards searched in the ontologies associated
to the semantic descriptions of services in order to help the
service discovery mechanism.

Another possible, but more complex, strategy is to derive an
ontological representation of the request. Different approaches
can be used in order to achieve this goal: in [17] the user
”query” is translated into an ontological formula that consists
in a set of Description Logic predicates; in [17], [11], [6]
the recognition of named entities offers semantic coordinates
capturing the main concepts involved in the request and then
a coarse grained analysis of the request (Subject-Verb-Object)
is produced in order to intercept the logical relations between
concepts.

From the textual request the semantic type of parameters as
well as their values, if present, can be extracted; this task can
be performed only if a proper recognizer, capable of extracting
specific information, is used.

With the help of well-adapted ontologies, a priorization of
the parameters is possible, in order to determine the user’s
preferences. For example, if the request contains ” I want this
service preferably in French but imperatively in video.”

Service identification consists mainly in the identification
of the service(s) that best match the user’s needs expressed as
the pertinent kept concepts extracted from the NL request in
step 1. The matching algorithm described in Section V is used
at this step.



B. Requested Service Specification

The specification of the requested service, coming from the
request analysis, indicates the goal to be reached by the desired
service. There are several different approaches in literature for
the specification of goals. These include work on semantic
web services and AI-planning. For example, Fujii and Suda
in [7] use semantic graphs derived from natural language
descriptions.

For the approach we chose to present in this paper, we
assume that the service requester is an end-user, who rep-
resents the goal and the properties of the service he requires
through the simplest way, via a NL request. For example, let
us consider this sample of such end-user requests: “A German
version of a text”.

A lexical analysis of this request is followed by a semantic
analysis, in order to extract a set of requirements that can be
expressed under the form of semantic descriptions of the in
demand service.

The first result of the lexical analysis is a list of pertinent
words, with their synonyms or canonical form if necessary
(the non-pertinent words are ignored). The pertinent words
are “German”, “version” and “text”. Using the ontology we
deduce that “version” is synonym of “translation”. In the
second result, the semantic analysis module adds specific
semantic information, pertinent for a given specific domain
of application.

“A German version of a text”, is “understood” by the
analyzer as a “need” for a Translation service, and can be
expressed under the form of the call of a Translate function
with the parameters “text” and “German”: translate(text, Ger-
man)

As a consequence, through this simple request example,
we assume that within the context of our approach, the
specification of the required service, represented by a list of
“needs of services”/concepts, can be finally understood as a
couple {function, parameters}1.

A couple of {function, parameters} is transformed into
a service request as follows. The name of the function is
considered as the name of requested operation. The parameters
are transformed into inputs of operation. The outputs of the
operation depend on the request. In the following section, we
show how we describe formally a service request.

IV. FORMAL SEMANTIC DESCRIPTION

The contribution given in our approach consists in adding
information to requests described in SAWSDL [15], thanks
to WSDL 2.0 [1] extensibility, in order to enable requester
to specify his preferences and proposes matching algorithm
that takes into account the additional information given in the
previous step.

A. Preference ontology

One of the objectives of our approach is to enable users
to specify their preferences on elements in requests. In this

1For the general case, the result is a list of couples {function, parameters}
where a composition process is needed to deal with the analyzed request.

Section, we explain how preferences are expressed. In fact,
we assume that users can either refers to an own preferences
ontology or to a public one. In the later case we define a
function that associates to each preferences ontology concept,
a value between 0 and 1. For every preference ontology, we
suppose that there are two basic concepts Mandatory and Null.
Mandatory is the concept of the highest level of preference
(i.e. preference = 1). Null is the concept with the lowest level
of preference (preference = 0).

To simplify, the preference ontology presently used in our
prototype contains only an enumeration class, called level. The
class level has the property value which specifies a floating
value associated to each level. level is one of the classes:
Mandatory, High, Medium, Low and Null. Preference values
associated to them are respectively 1, 0.75, 0.5, 0.25 and 0.
This ontology could be extended to include other types of
preferences.

B. SAWSDL extension for request description

Semantic Annotations for WSDL (SAWSDL) [15] defines
how to add semantic annotations to various parts of a WSDL
document such as input and output message structures, inter-
faces and operations. The extension attributes defined in this
specification fit within the WSDL 2.0 extensibility framework
[15]. To meet this end, SAWSDL defines a new specific
namespace sawsdl and adds an extension attribute, named
modelReference, to specify the association between WSDL
components and concepts in some semantic model. In the
following, we give the formal description using SAWSDL og
the request “A German version of a text”.
<wsdl:operation name="translate" >
<wsdl:input element="text"
sawsdl: modelReference="http://w3/ontology/language#French"/>

<wsdl:output element="text"
sawsdl: modelReference="http://w3/ontology/language#German"/>

</wsdl:operation>

Following the example of WSDL extension, we extend
SAWSDL to enable the specification of user’s preferences.
The extension is done by adding the attribute preference. It is
used to associate an importance degree to WSDL operations,
inputs, outputs, preconditions and effects.

In order to assign preferences to a simple type we use
the attribute preference with name space psawsdl. Here for
example the preference assigned to the input text is High i.e. it
is important for the requester that the service translates French
texts.
<wsdl:operation name="translate" >
<wsdl:input element="text"
sawsdl: modelReference="http://w3/ontology/language#French"
psawsdl: preference="http://w3/ontology/preference#High"/>

<wsdl:output element="text"
sawsdl: modelReference="http://w3/ontology/language#German"
psawsdl: preference="http://w3/ontology/preference#Medium"/>

</wsdl:operation>

V. BRINGING WEB SERVICES AND USERS TOGETHER

We present our matching algorithm that evaluates the sim-
ilarity between user request and Web service advertisement
both described in SAWSDL. This consists of matching two



SAWSDL files. This section is organized in three sub-sections.
The first one details concept matching. The second shows how
preferences impact this matching. And, the last subsection
shows the matching algorithm.

A. Concepts matching
Prior to explaining the matching, let us give some definition.

Assume that concept X is a direct or indirect subclass of
concept Y . PropNum(X) function denotes the number of
properties of concept X and path(X, Y ) function denotes
the set of classes (X and Y included) that are in the path
connecting X to Y . RhetoProp(X, Y ) function determines
the number of rhetorical relations between X and Y . It
should be noted that concept and class mean the same thing
here. We denote by X the concept in the request and by Y

the concept in the advertisement service. MatchCpt(X, Y )
function matches a concept in a request against a concept
in an advertisement. Now we give the exact definition of
MatchCpt(X, Y ) function:

• MatchCpt(X, Y ) = MatchCpt(Y, X) = 1; if X and Y are the
same concept or declared as equivalent classes.

• X is subclass of Y and thus, X inherits all Y properties.
Z is the first common super-class of X and Y . It is
important to distinguish whether X and Y are outputs
or not.

– X and Y are outputs:
MatchCpt(Y, X) = 1

and

MatchCpt(X, Y ) =

∑

n∈path(Y,Z)

PropNum(n)

∑

n∈path(X,Z)

PropNum(n)

– X and Y are not outputs:
Match(X, Y ) = 1

and Match(Y, X) =

∑

n∈path(Y,Z)

PropertyNum(n)

∑

n∈path(X,Z)

PropertyNumebr(n)

• X and Y are two subclasses of class Z. Thus, they
inherit all Z properties. The similarity between X and Y

depends on the number of the common properties they
inherit from Z and the rhetorical relation between X and
Y and their own properties. In this case the similarity is
symmetric.
rhProp = RhetoProp(X, Y )

and
sum1 =

∑

n∈path(X,Z)

PropNum(n) − rhProp

and
sum2 =

∑

n∈path(Y,Z)

PropNum(n) − rhProp

and
MatchCpt(X, Y ) = MatchCpt(Y, X)

and
MatchCpt(X, Y ) =

P ropNum(Z)+rhP rop

sum1+sum2−P ropNum(Z)

• X and Y have a rhetoric relation between them and do
not have a common super-class.

MatchCpt(X, Y ) = MatchCpt(Y, X) =
RhetoP rop(X,Y )

P ropNum(X)+P ropNum(Y )−2∗RhetoP rop(X,Y )

• for other cases the similarity between X and Y are null.
MatchCpt(X, Y ) = MatchCpt(Y, X) = 0

B. Impact of user’s preferences on the matching

The second part of the algorithm consists of examining the
preference included in a user’s requester. Our algorithm uses
prefV alue(X) function that returns the numeric preference
value associated with element X . The function that calculates
this value is called MatchPref(). It takes as parameters
two elements (input,output) and returns the final matching
associated with them (see Algorithm 1). The first parameter of
MatchCpt() is an element from the request and the second
parameter is from the advertised service.

Algorithm 1 MatchPref(rqt, adv)

1: α = MatchCpt(rqt, adv); x = prefV alue(rqt);
2: if (α == 0) then
3: return 0;
4: else
5: if (x == 1) then
6: return α;
7: else
8: return (α − 1)x + 1;
9: end if

10: end if

We assume that if the importance assigned to a request is
mandatory (line 3 in Algorithm 1), the function keeps the
exact value of the matching of concepts rqt and adv. When
the preference assigned to the request is not mandatory, the
algorithm increases the value of the matching (line 4). In fact,
when there is an element in the request, which is not important
for the user, we consider that this element can be replaced by
another one that does not match exactly with it, since it is no
too important for the user.

C. Computing the global matching result

In the previous two steps (Section V-A and V-B) we
explained how to compute the matching of two concepts taking
into account the preferences associated with the request. Once
the matching of each pair of concepts is done, we compute the
global matching as the average of these pair matching results.
Line 26 in Algorithm 2 shows the computing of the global
matching result of two operations.

The matching result between two operations is computed
from the matching of concepts of inputs, outputs, precondi-
tions, effects, and operations as well as the matching between
user’s contexts and service’s capacities. The value associ-
ated with each of these elements in the final matching is
computed from the result of concept matching (computed by
MatchCpt() function) and the preference associated with the
request (computed by prefV alue() function).

Algorithm 2 defines the matching of two operations. To
ease the reading, we do not deal with preconditions and effects



Algorithm 2 MatchOp(rqtOp, advOp)

1: i1 = Input(rqtOp);
2: i2 = Input(advOp);
3: o1 = Output(rqtOp);
4: o2 = Output(advOp);
5: sumIn = 0;
6: numIn = 0;
7: sumOut = 0;
8: numOut = 0;
9: opMatch = 0;

10: for (e1 ∈ Elts(i1) and e2 ∈ Elts(i2)) do
11: sumIn = sumIn + MatchPref(e1, e2);
12: numIn + +;
13: end for
14: for (e1 ∈ Elts(o1) and e2 ∈ Elts(o2)) do
15: sumOut = sumOut + MatchPref(e1, e2);
16: numOut + +;
17: end for
18: inMatch = sumIn

numIn
; outMatch = sumOut

numOut

return inMatch+outmatch+opMatch
3

matching and assume that elements of input/output are ordered
and have the same number. The reader can easily deduce the
general case.

VI. RELATED WORK

In [19], the authors introduce a corpus-based method to
facilitate the matchmaking of WSDL files. This method uses
the Web as an effective corpus and the matchmaking is
done by computing the similarity between all pairs of ele-
ments from a request and WSDL advertisements. In order
to calculate elements similarity they compute the similarity
of words composing elements, which is done by taking into
account the context in which words appear in documents. This
approach has some drawbacks, some of them are addressed
by the authors. First, by using the Web as corpus, one has
the same corpus for different domains. In fact, for example
the same word can be find twice in the same context with
different meaning. Second, the system works correctly only
for elements named in a single word. Third, the approach does
not address any of our requirements given above in Section II

A step-by-step matching algorithm that can be used to
determine the semantic similarity of two Web Services is
introduced in [18]. The algorithm works for services described
in OWL-S [14] and is composed of four steps. If one step
fail, the other ones are not required. The first step consists of
matching service Profiles. The second one is input matching.
The third one consists of output matching. Finally if the result
of these three former steps is not Fail, then the matching of
the non-functional properties is done. Like [13], the algorithm
defines five degrees of matching Exact, PlugIn, Subsume,
Intersection, and Fail.The algorithm proposed in [18] does not
take into account rhetoric relations between concepts during
the matching as well as request preferences. The algorithm

assume that the request is written on OWL-S and consequently
it does not deal with the translation of the request from natural
language into a formal description (our II-A requirement)

In [10] the authors propose an ontology service description
language (OSDL) and an ontology service query language
(OSQL). OSDL enables to annotate a WSDL file by mapping
inputs, and outputs to ontology concepts. So it is similar to
WSDL-S [2]. The OSQL is very similar to the OSDL. The
difference is that OSQL describes the semantic of requests
and OSDL describes the semantic of advertised services. This
algorithm computes similarity between concepts by taking
into account not only the inheritance relation but also the
rhetoric relation between concepts. Two concepts X and Y are
considered perfectly similar if (1) X = Y; they have the same
information. Thus, X is similar to Y. (2) X is subclass of Y.
In this case X is considered as similar to Y but not the other
way around. (3) X is the property of Y. So Y is considered as
perfectly similar to X but not the other way around. (4) X is
the property of some class Z, while Y is a subclass of Z. Then
Y is said perfectly similar to X but not the other way around.

Consequently this approach deals with the matching of
rhetorical and inheritance relation and thus it address our
second requirement (see II-B). However this approach does
not address our first and third requirement (see our II-C and
II-A requirements)

VII. CONCLUSION AND PERSPECTIVES

We presented in this paper a novel approach to enhance
web service discovery based on, among others, requesters’
preferences. First of all, we presented a technique for translat-
ing user’s requests written in natural language into semantic
and formal descriptions. Then we proposed a way to express
preferences of request elements. Finally, we introduced a
matching algorithm that takes into account these preferences
in the discovery algorithm. Inheritance and rhetoric relations
between concepts are used in the concepts matching. The
result of that matching is modulated according to the request
preferences.

Currently, we are developing a semantic-driven, capacity-
aware, and preference-aware matchmaker that we will inte-
grate into our CoopFlow framework [5]. This framework is
already provided with a behavior-based matchmaker of com-
posite Web services and service-oriented business processes
and workflows [9].

REFERENCES

[1] WSDL 2.0 Home Page. http://www.w3.org/TR/wsdl20/, 2006.
[2] WSDL-S Home Page. http://www.w3.org/Submission/WSDL-S/, 2005.
[3] WSMX Home Page. http://www.wsmx.org/, 2005.
[4] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, and Farouk

Toumani. Request rewriting-based web service discovery. In Interna-
tional Semantic Web Conference, pages 242–257, Sanibel Island, Florida,
USA, 2003.

[5] Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-based
approach to dynamic inter-organizational workflow cooperation. Data
Knowl. Eng., 56(2):139–173, 2006.

[6] Kurt Englmeier, Javier Pereira, and Josiane Mothe. Choreography of
web services based on natural language storybooks. In Mark S. Fox
and Bruce Spencer, editors, ICEC, pages 132–138. ACM, 2006.



[7] Keita Fujii and Tatsuya Suda. Semantics-based dynamic service
composition. IEEE Journal on Selected Areas in Communications,
23(12):2361–2372, December 2005.

[8] Johannes Heinecke and Farouk Toumani. A natural language mediation
system for e-commerce applications: an ontology based approach. In
Workshop on Human Language Technology for the Semantic Web and
Web Services, 2nd International Semantic Web Conference, Sanibel
Island, Florida, October 2003.

[9] Kais Klai, Nomane Ould Ahmed M’Bareck, and Samir Tata. Behavioral
technique for workflow abstraction and matching. In Schahram Dustdar,
José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process
Management, volume 4102 of Lecture Notes in Computer Science, pages
477–483. Springer, 2006.

[10] Li Kuang, ShuiGuang Deng, Ying Li, Wei Shi, and Zhaohui Wu.
Exploring semantic technologies in service matchmaking. In Third
European Conference on Web Services (ECOWS’05), pages 226–234,
Växjö, Sweden, 2005.

[11] Javier Pereira Kurt Englmeier and Josiane Mothe. Choreography of
web services based on natural language storybooks. In Workshop on
Information Integration on the Web in conj. with 15th international
conference on World Wide Web, WWW 2006, Edinburgh, Scotland, UK,
May 2006.

[12] Ke Li, Kunal Verma, Ranjit Mulye, Reiman Rabbani, John A. Miller,
and Amit P. Sheth. Designing semantic web processes: The WSDL-S
approach. In Jorge Cardoso and Amit P. Sheth, editors, Semantic Web
Services, Processes and Applications, pages 161–192. Springer, 2006.

[13] Lei Li and Ian Horrocks. A software framework for matchmaking based
on semantic web technology. In Proceedings of the 12th international
conference on World Wide Web (WWW’03), pages 331–339, Budapest,
Hungary, 2003. ACM Press.

[14] David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H.
Burstein, Drew V. McDermott, Deborah L. McGuinness, Bijan Parsia,
Terry R. Payne, Marta Sabou, Monika Solanki, Naveen Srinivasan,
and Katia P. Sycara. Bringing semantics to web services: The owl-
s approach. In Semantic Web Services and Web Process Composition
Workshop, volume 3387 of Lecture Notes in Computer Science, pages
26–42, San Diego, CA, USA, July 2004.

[15] Semantic Annotations for WSDL Home Page.
http://www.w3.org/TR/sawsdl-guide/, 2006.

[16] David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillo. A
semantic web approach to service description for matchmaking of
services. In Proceedings of the International Semantic Web Working
Symposium (SWWS), pages 447–461, Stanford, CA, USA, 2001.

[17] Ian Wakeman, David Weir, Bill Keller, Julie Weeds, and Tim Owen.
Composing grid services through natural language. In Workshop on
Ubiquitous Computing and e-Research (4th UK UbiNet Workshop), May
2005.

[18] Yonglei Yao, Sen Su, and Fangchun Yang. Service matching based on
semantic descriptions. In Proceedings of the Advanced International
Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT/ICIW), page 126,
Guadeloupe, French Caribbean, 2006.

[19] Ziming Zhuang, Prasenjit Mitra, and Anuj Jaiswal. Corpus-based
web services matchmaking. In Workshop on Exploring Planning and
Scheduling for Web Services, Grid and Autonomic Computing, pages
46–52, Pittsburgh, Pennsylvania, 2005.


