
◆ Semantic Application Design
Philippe Larvet

This paper presents a process to determine the design of an application
by building and optimizing the network of semantic software components
that compose the application. An application has to implement a given
specification. We postulate that this specification is made up of atomic
requirements, logically linked together. On one hand, each requirement
is expressed in natural language and this expression is seen as the semantic
description of the requirement. On the other hand, the off-the-shelf
components used to build the application can also be described through
a semantic description, called a “semantic card.” Within this context, we
consider a component fulfills a requirement if the “semantic distance”
between their two semantic descriptions is minimal. Consequently, building
an application consists of building and optimizing the logical network of all
the semantic optimal couples “requirement-component.” The paper presents
an automatic building and optimization process, whose development and
improvement are still in progress, and whose main advantage is to
systematically derive the discovery and assembly of software components
from the written specification of the application. © 2008 Alcatel-Lucent

and the guiding principles that inform the design of

the system.” [18]

Many authors have described several methods to

guide the building of component-based applications

[2, 3, 10], but except within the field of semantic Web

services composition (described in [14]), it seems that

an automatic semantic-oriented process has not been

considered as a serious approach to design. Traditional

(i.e., nonsemantic) component-based development

approaches have two main drawbacks: they are often

fully manual, and the process of finding and assem-

bling the right components is not directly derived

from the text of the written specification.

Moreover, it is important to notice that the

research in semantic Web services [14, 16] does pro-

pose a semantic-oriented design approach, but this

Problem of Application Design
Software application design is traditionally

a complex activity. According to the accepted

definitions used as references in the scope of object-

oriented and component-based application develop-

ment, and according to Grady Booch [1], design is

“that stage of a system that describes how the sys-

tem will be implemented, at a logical level above

actual code. For design, strategic and tactical deci-

sions are made to meet the required functional and

quality requirements of the system. The results of

this stage are represented by design-level models:

static view, state machine view, and interaction

view.” The activity of design leads to the architecture

of the application, which is “the organizational struc-

ture of a system, including its decomposition into com-

ponents, their connectivity, interaction mechanisms,

Bell Labs Technical Journal 13(2), 75–92 (2008) © 2008 Alcatel-Lucent. Published by Wiley Periodicals, Inc. Published
online in Wiley InterScience (www.interscience.wiley.com) • DOI: 10.1002/bltj.20304

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 75

76 Bell Labs Technical Journal DOI: 10.1002/bltj

approach uses a logic-based approach to the specifi-

cation of semantics whereas the approach presented

in this paper uses natural language as the basis for

specifying semantics.

It is obvious that an application has to rely on a

given specification. Here, we consider this specifica-

tion exists under the form of natural language,

informal text, which describes the functional and non-

functional requirements that the application must

address. We have made three main assumptions in

this paper:

• A software application can be built by assembling

off-the-shelf components,

• The determination of components can be derived

from the semantic analysis of the requirements,

and

• The application design, i.e., the architecture of

the solution, can be derived from the architecture

of the problem, i.e., from the relationships

between the requirements.

• Based on these three postulates, the objective

of this paper is to propose a novel way to enhance

the automatic production of a software application

design.

The Proposed Process
We consider an application as a set of interrelated

components. Each component has a functionality,

expressed as a set of functions, and encapsulates and

manages its own data: this is the component para-

digm, derived from object-orientation and today’s

standard of development.

We consider that we have at our disposal many

small off-the-shelf components, stored in appropriate

component repositories. Each one covers a precise

elementary function, an atom of functionality—for

example, file management, database access, graphi-

cal user interface (GUI) display mechanisms, text

translation, Hypertext Markup Language (HTML)

pages reading from uniform resource locators (URLs),

and elementary functions for text processing. In addi-

tion to the concept of semantic component [8, 19,

24], we propose that each component was described

through a “semantic card” which contains notably the

“goal” of the component, expressed simply in natural

language form and describing clearly what the com-

ponent really does, what its functions are, and which

data it manipulates.

Through an appropriate process that we explain in

detail in the following, we propose to determine the

“meaning” of the sentence representing the compo-

nent’s goal, i.e., its semantics, and to express it in terms

of an appropriate computable data structure. Thus,

the idea is to mark every “semantic atom” of func-

tionality with its appropriate semantic data structure.

We also have a specification document containing

the requirements that describe what the application

will do, and what its functional and nonfunctional

features are. The requirements are a set of sentences

expressed in natural language. Each sentence has a

meaning which can be discovered by using the same

process. Each sentence, i.e., each piece of specifica-

tion, each atom of requirement, can therefore be eval-

uated and marked, and each sentence will receive its

Panel 1. Abbreviations, Acronyms, and Terms

2D—Two dimensional
3D—Three dimensional
comp—Component
FILO—First in, last out
GUI—Graphical user interface
HTML—Hypertext Markup Language
IMS—IP Multimedia Subsystem
IP—Internet Protocol
NL—Natural language
OWL-S—Ontology Web Language for Services
RDF—Resource Description Framework

RSS—Really Simple Syndication
semCard—Semantic card
semProx—Semantic proximity
semTag—Semantic tag
semVector—Semantic vector
synVector—Synonym vector
UML—Unified Modeling Language
URL—Uniform resource locator
VAT—Value added tax
WSDL—Web Service Description Language
XML—Extensible Markup Language

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 76

DOI: 10.1002/bltj Bell Labs Technical Journal 77

own semantic data. This process is distinct from an

ontology-based requirement analysis approach [8],

where the authors propose a software requirements

analysis method based on a domain ontology

technique, in which a mapping can be established

between a software requirements specification and

several domain ontologies. Note that an ontology [21]

is a formal description of the concepts manipulated

in a given domain and of the relationships between

these concepts. Here, no external ontology is used to

help the requirements analysis, because the semantics

are extracted from the text itself.

The set of sentences composing the requirements

are logically linked to each other. Then, it is possible

to determine a “requirement network” by scanning

the links between the requirement atoms: this brows-

ing will determine the structure of the “specification

molecule”—the molecule that describes the problem.

Analyzing many specifications within the context

of numerous industrial projects developed with an

object-oriented approach [11] has led us to observe

that a link between two different requirements in the

specification always leads to a link between the classes

implementing these requirements. Indeed, two pieces

of a requirement are linked to each other when they

both talk about a given datum, constraint, function-

ality, or feature of the targeted application. Then, the

same link exists between the components imple-

menting these requirements.

For example, imagine an application used to cal-

culate the value added tax (VAT) of an invoice: the

text of the specification contains two different para-

graphs concerning the VAT computation. The first one

explains the general method to compute the VAT. The

second paragraph, perhaps located several pages later

in the specification document, gives the different VAT

rates according to the product categories. Obviously,

these two pieces of requirement are linked together

because they address the same data. And necessarily,

the two design components implementing these

requirements have to be linked together, because the

computation of the VAT for a given product needs

the general method to calculate a VAT amount.

Consequently, it makes sense to consider that the

links between the bricks of the problem have a simi-

lar correspondence to the links between the blocks of

the solution. In other terms, the problem structure—

specification molecule—is isomorphic to the solution

structure—design molecule.

Given these axioms, the proposed process con-

sists of three steps:

1. Finding the components whose semantic distance

is the shortest with the semantic atoms of

requirements.

2. Organizing these components in order to consti-

tute the “solution molecule,” i.e., the initial archi-

tecture of the application. The initial design is

made by replicating the problem molecule and

using solution atoms instead of problem atoms,

but these kinds of atoms are different and do not

have exactly the same nature, so the initial com-

ponent interaction model has to be optimized.

3. Optimizing the structure of the solution molecule

in order to determine the best component inter-

action model.

This approach for composing software compo-

nents is different from the usual processes described in

literature, for instance, within the scope of semantic

Web services automatic composition. McIlraith and

Narayanan [14], for example, propose a composition

and simulation solution using a Petri net formalism to

create a composite Web service expressed in Ontology

Web Language for Services (OWL-S) [23]. At the

highest level, McIlraith and Narayanan start with a

set of elementary Web services that have semantic

descriptions, along with a specification of a desired

goal to be satisfied by a composite Web service.

The goal is expressed as a sentence written in the sit-

uation calculus language [17], i.e., a first-order logical

language. They then describe how a composite Web

service that satisfies the goal can be automatically

constructed from the original set of given Web serices,

if such a composite Web service exists. Petri net for-

malism is used to create the composite Web service,

which is the final result specified using OWL-S.

Within our approach, the initial component interac-

tion model—that corresponds to the initial design of

the future application—is not built from a generated

structure that would come from the semantic descrip-

tions of components; this initial model is built from

the relationships between the application’s require-

ments: an association between two requirements will

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 77

78 Bell Labs Technical Journal DOI: 10.1002/bltj

determine an association between the two compo-

nents that cover these requirements. This point will be

detailed later. Figure 1 illustrates the principle of

building a network that determines the “requirements

molecule.”

Semantic Cards for Components
Semantic cards (semCards) formally describe the

small off-the-shelf components that are used to build

applications. Each semCard contains the goal of the

component and the list of its public functions with

their input and output data.

We propose that a semCard has an Extensible

Markup Language (XML) representation where

input and output data are described with three main

attributes:

1. A data name,

2. A concept associated with the data, expressed in

reference to a word defined in an external dic-

tionary or thesaurus, in order to specify the

semantics of the data; here, the concept belongs

to a domain addressed by the component whose

name is mentioned in the semCard’s header, and

3. A semantic tag (semTag) of the data, which rep-

resents a stereotype of a semantic data type and

specifies the nature of the data; this semTag will

be useful to determine and optimize the compo-

nents’ interactions and will be discussed in the

second part of the paper.

The semantics of the operations’ goals is defined

with precise rules:

• Goals are expressed in natural language, using

specific words,

• These words belong to “lists of concepts” that are

embedded in the semCard and summarize the

pertinent words to be used to write goals, and

• The words composing the lists of concepts are

defined in external dictionaries and belong to

related domains that are referenced in the

semCard.

These rules help to write operation goals that are

terse and unambiguous.

Ontologies [21] could be used to summarize and

formalize the definitions of concepts and domains,

but this is not mandatory. Resource Description

Framework (RDF) [15] or OWL [22] is convenient to

depict such ontologies, because they are standard and

well-tooled languages, but simple ad hoc appropriate

XML files containing word definitions and domain

descriptions should also be suitable.

Panel 2 provides an example of the semCard for

an RSS-feed-accessor component.

Determining the Meaning of Sentences
One of the key aspects of the process we propose

here is the ability to compare the meaning of a

requirement extracted from the specification document

with a component’s goal, which is part of the compo-

nent’s semCard. This is done to enable a mapping

between components and the requirements they cover.

The key to this comparison is the ability to deter-

mine the “meaning” of a given text. We consider the

meaning of a text is made up of the concatenation of

elementary meanings of all the pertinent terms that

compose the text. The ability to compare the meaning

of two different texts implies the ability to compare

two different terms or concepts, and to be able to

determine whether they are semantically close or not.

We now provide a brief overview of work related

to semantic proximity (semProx) in natural language

expressions. S. Khaitan and coauthors [9] provide a

good summary of interesting work within this

{52, 47, 34, 28, 0, 0}

{43, 39, 24, 12, 0, 0, 0, 0}

Req—Requirement

Req1

Req2

Req3

Figure 1.
Building the requirement network, i.e., the “problem
molecule.”

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 78

DOI: 10.1002/bltj Bell Labs Technical Journal 79

domain. Corley [4] presents a knowledge-based

method for measuring the semantic similarity of texts;

his method combines word-to-word similarity met-

rics, based on words’ distances inside taxonomies, into

a text-to-text metric. Guha and coauthors [7] pres-

ent an application called Semantic Search, which is

built on technologies including Web services and

Semantic Web, which are creating a web of machine

understandable data. They also provide an overview

of an application framework upon which the

Semantic Search is built. Mayfield and Finn [13]

describe an approach to retrieval of documents con-

taining both free text and semantically enriched

markup. They present a prototype of a framework in

which documents and queries can be marked up with

statements in a specific semantic Web language.

Guarino and coauthors [6] use linguistic ontology for

content matching in information retrieval. Their

approach applies only to the search field in a relevant

class of information repositories, such as online yellow

pages and product catalogs. Evans and Zhai [5] report

on the application of a few noun-phrase analysis tech-

niques to create indexing phrases for information

retrieval. They describe a hybrid approach to the

extraction of meaningful (continuous or discontinu-

ous) subcompounds from complex noun phrases

using both corpus statistics and linguistic heuristics.

The novelty of our approach is to propose a way

to express the meaning of an elementary term in

order to be able to process a comparison with another

term. To do so, we build a “vector” with the synonyms

of the term that can be found in a thesaurus.

The concept of “vector” is not used here in the sense

of a geometrical object, but as a close and limited set

Panel 2. SemCard for an RSS-Feed-Accessor Component

�semCard�
�URL�http://xxx.xx.xxx.x/components/RSS/RSS_Component.asmx�/URL�
�component name�”RSS”�

�domains�
�domain name�”RSS”�

�concepts list�”RSS, RSS_feed, URL, news” /�
�/domain�
�domain name�”News”�

�concepts list�”news, title, titles, description, article, text, News Agency” /�
�/domain�

�/domains�
�operation name�”getAllTitles”�

�goal�Deliver the titles of all the news of the RSS feed addressed by a given URL.�/goal�
�inputs�

�input name�”URL_RSS” concept�”RSS#URL” semTag�”URL” /�
�/inputs�
�output name�”titles” concept�”News#title” semTag�”text” /�

�/operation�
�operation name�”getDescriptionOfTitle”�

�goal�Deliver the description of the title of one news of the RSS feed addressed by a given
URL.�/goal�
�inputs�

�input name�”URL_RSS” concept�”RSS#URL” semTag�”URL” /�
�input name�”title” concept�”News#title” semTag�”short_text” /�

�/inputs�
�output name�”description_of_title” concept�”News#description” semTag�”text” /�

�/operation�
�/component�

�/semCard�

AQ 1

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 79

80 Bell Labs Technical Journal DOI: 10.1002/bltj

of elements all having the same nature and all linked

to the same equivalence relationship. We call it a

“synonym vector” (synVector).

For example, the synVector of the term “battle” is:

battle � {fight, clash, combat, encounter,

skirmish, scuffle, mêlée, conflict, con-

frontation, fracas, fray, action; strug-

gle, crusade, war, campaign, drive,

wrangle, engagement} (19)

Other examples are:

war � {conflict, combat, warfare,

fighting, confrontation, hostilities,

battle; campaign, struggle, crusade;

competition, rivalry, feud} (13)

peace � {concord, peacetime, amity,

harmony, armistice, reconciliation,

ceasefire, accord, goodwill; agreement,

pact, pacification, neutrality, negotia-

tion} (14)

For synVectors, we define the following functions:

• synV(word) defines the synVector for the term

“word,”

• card(V1) gives the cardinal of the vector V1,

i.e., the number of synonyms inside V1,

• common(V1, V2) gives the synonyms that are

common to V1 and V2, and

• avg(V1, V2) gives the average of the cardinals

of V1 and V2.

For example, card(common(synV(“battle”),

synV (“war”))) 5 9. In other words, there

are nine synonyms common to “battle” and “war.”

We also define the concept of semantic proximity

between two terms T1 and T2 by calculating a ratio

taking into account the common synonyms within

the two synVectors synV(T1) and synV(T2).

The semantic proximity is given by the formula:

semProx(T1, T2) � 100 * card(com-

mon(synV(T1), synV(T2))) / avg(synV(T1),

synV(T2))

For example,

semProx(“battle”, “war”) 5 100 * 9 /

0.5 * (19 � 13) 5 900 / 16 5 56.25.

In other words, in the union of the sets of synonyms

for “battle” and “war,” 56 percent of the elements are

found to be duplicates.

The semProx expresses the proximity ratio

between two terms. If semProx is greater than a given

value A (for instance, 50) or close to 100, we consider

the two terms to be semantically close. Inversely,

if the semProx is less than a given value B (for instance,

10) or close to zero, the two terms are semantically

distant. Values of levels A and B can be “tuned,”

according to the category of texts to be processed.

Of course, semProx(“war”, “peace”) � 0

(the model seems to be consistent!)

The determination of the meaning of a given sen-

tence is made as follows:

• The sentence is analyzed and the pertinent words

are extracted—nonpertinent words such as arti-

cles, prepositions, and conjunctions are ignored.

• For each pertinent word, a corresponding

synVector is built.

• A global vector for the whole sentence that we

call a “phraseVector” is built by assembling all the

synVectors of the pertinent words contained in

the sentence. This means a phraseVector is a vec-

tor of vectors, as shown in Figure 2.

For example, we will build a phraseVector for

the following requirement, extracted from the

specification of a call management system: “The caller

This very text
describes a battle

between two armies

synVectors

phraseVector

synVector—Synonym vector

Figure 2.
Principle of building a phraseVector for a given
sentence.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 80

DOI: 10.1002/bltj Bell Labs Technical Journal 81

makes a call to a receiver by creating a message that

contains the call subject, submitted to the receiver at

the same time.”

The pertinent terms are caller, call, make a call,

receiver, message, subject, submit.

The phraseVector for this requirement is the con-

catenation of the following synVectors:

caller � {phone caller, telephone

caller, visitor, guest, company}(5)
call � {phone call, telephone call,

buzz, bell, ring; demand, request, plea,

appeal, bid, invitation}(11)
make a call � {phone, make a demand,

send a request} (3)
receiver � {recipient, heir,

addressee, beneficiary, inheritor, heri-

tor}(6)
message � {communication, memo, mem-

orandum, note, letter, missive, dis-

patch}(7)
subject � {topic, theme, focus, sub-

ject matter, area under discussion, ques-

tion, issue, matter, business, substance,

text; field, study, discipline, area}(15)
submit � {offer, present, propose,

suggest, tender}(5)

The comparison of three sentences S1, S2, and

S3 is made by comparing their phraseVectors. This

comparison builds a result that will be used to calcu-

late the “semantic distance” between the sentences.

Let us detail the phraseVectors comparison steps:

• The internal synVectors of the two phraseVectors

are compared two by two—this means every

synVector in S1 is compared to every one in S2

and S3.

• The semantic proximity is calculated for each pair.

• The best values of the semProx among all com-

parisons are kept in an ordered external semantic

vector (semVector), as a result of the comparison.

• The comparison of the semVectors for sentences

S1 and S2, and S1 and S3, allows us to determine

whether S1 is semantically closer to S2 or S3.

Figure 3 shows the principle of building a

semVector from the synVectors of two sentences.

Comparison result:
semVector

{52, 59, 48, 47, 39}

synVectors
synVectors

phraseVectors

This very The story that I tell...
concerns a war

... between two
regiments

text
describes a battle

between two armies

semVector—Semantic vector
synVector—Synonym vector

Figure 3.
Principle of building a semVector from the synVectors of two sentences.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 81

82 Bell Labs Technical Journal DOI: 10.1002/bltj

The search for components that cover a given

specification follows this approach:

• The phraseVectors of the sentences compos-

ing the specification are built and compared

with the phraseVectors built from the goals of

the components present in the component

repository.

• The corresponding semVectors are built for every

pair requirement-component.

• The best semVectors are kept and help to deter-

mine the components that are able to fulfill the

requirements.

Table I shows an example of searching for corre-

spondences between the requirement “The caller

Component name Component goal semVector

AL Stock Returns the value of Alcatel-Lucent’s stock, in euros and dollars {0, 0, 0, 0, 0, 0, 0}

AnDiscOrGeX Analyzes, discovers, orchestrates, generates, and executes a
composed service responding to a given user’s request {24, 15, 0, 0, 0, 0, 0, 0, 0}

Calculator Returns the result of a two-terms operation among the four {12, 0, 0, 0, 0, 0, 0}
basic ones

Contact Info Returns useful information concerning a person registered in {21, 15, 0, 0, 0, 0, 0, 0}
Searcher a given X.500 directory

DateTime Returns the current date and time {0, 0, 0, 0, 0, 0, 0}

Definition Returns the English dictionary definition of a given word {13, 0, 0, 0, 0, 0, 0}

FaxSender Sends the given text of a fax to a given fax number {35, 28, 0, 0, 0, 0, 0}

Language Finder Determines the language in which a given text is written {12, 0, 0, 0, 0, 0, 0}

MakeCall Makes a call between two given phone numbers {100, 100, 0, 0, 0, 0, 0}

Meteo Returns weather information for a given city in France {12, 0, 0, 0, 0, 0, 0}

Message Sender Sends the text of a message to a given recipient {100, 80, 80, 0, 0, 0, 0}

Phrase Vector Returns the phraseVector built from two different given {10, 0, 0, 0, 0, 0, 0}
Builder sentences

RSS_Titles Returns all the RSS titles for a given URL of an RSS feed {0, 0, 0, 0, 0, 0, 0}

RSS_Description Returns the description of a given RSS title for a given URL {0, 0, 0, 0, 0, 0, 0}
of an RSS feed

Semantic Discovery Returns a list of the discovered services matching with a given {0, 0, 0, 0, 0, 0, 0}
list of concepts

Semantic Query Returns the list of the pertinent concepts extracted from a {10, 0, 0, 0, 0, 0, 0}
Analyzer given phrase written in natural language

SMSSender Sends a message as an SMS to a given mobile phone number {100, 80, 0, 0, 0, 0, 0}

Synonyms Returns the list of synonyms of a given word {0, 0, 0, 0, 0, 0, 0}

Syn Vector Builder Returns the synVector of a given sentence {10, 0, 0, 0, 0, 0, 0}

Term Extractor Returns the pertinent terms extracted from a given text {12, 0, 0, 0, 0, 0, 0}

Translator Returns the version of a given text translated into a given {10, 0, 0, 0, 0, 0, 0}
target language

Table I. SemVectors resulting from the comparison between the requirement sample and the components goals.

RSS—Really Simple Syndication
semVector—Semantic vector
SMS—Short message service
synVector—Synonym vector
URL—Uniform resource locator

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 82

DOI: 10.1002/bltj Bell Labs Technical Journal 83

makes a call . . .” and a sample of a component set

stored in a given component repository. The pertinent

terms of the requirement are: {caller, call,

make call, receiver, message, subject,

submit}. The semVectors shown in the right column

of Table I are the results of comparisons between the

synVectors of these pertinent terms and those calcu-

lated from the component’s goal. A rapid view of

these semVectors helps easily determine the compo-

nents capable of fulfilling the requirement.

Determining the Problem Network
The requirement network summarizes and rep-

resents the links between the atoms of requirement

that are the sentences composing the specification.

Figure 1 shows the principle of building the network

that determines the specification molecule.

We use the semVector approach to reveal the

links between the requirement atoms: the sentences

of the specification are semantically compared two by

two, by using the phraseVector plus semVector

approach. Requirements are taken by pairs, phrase-

Vectors are built, and semVectors are calculated. The

result, for each requirement, is a set of vectors that

represents the links, in terms of the semantic distance

of each requirement with respect to the others. We

can “tune” the level of this semantic distance to keep

only the best semVectors in terms of semantic prox-

imity, i.e., the most semantically pertinent links for a

given requirement. It means that each requirement

has a limited number of other requirements that are

semantically close. So, we consider that a require-

ment can be formally described, within the context

of the whole specification, by a limited set of sem-

Vectors that represent the other requirements that are

semantically closest.

The links can be represented in a two-dimensional

(2D) or three-dimensional (3D) space, although

they are really in an abstract multidimensional

(multi-D) space. But the aim here is not to build a

true network of the problem, which would be an

objective difficult to reach, but only to model the prob-

lem, i.e., obtain a convenient representation on which

we can think and communicate and that we can struc-

turally compare to another. For example, Figure 4
shows a model of a problem network as a convenient

2D representation where links appear between some

requirements. Only the best links are kept on this

figure, i.e., the links whose semVector is larger.

For example, Req2 is linked with Req3 and Req5,

but since

semVector(Req2, Req5) � semVector(Req2,

Req3)

only the link Req2–Req5 is kept on the final

model. This is a question of optimization. Tuning the

model is possible by determining the maximum

acceptable gap between two semVectors. For example,

we could consider that the link Req2–Req5 will be

kept only if

diff(semVector(Req2, Req5),

semVector(Req2, Req3)) � 10

In other cases, the limit for this diff() could be 5 or

15, depending on the problem category or the kind of

requirements.

In reality, when building the architecture of an

application, all the links whose diff() is greater than

a minimal critical level could be kept in the problem

model, and the optimization performed in the solu-

tion model, as discussed later.

Building a Primary Solution Network
We assume that the structure of the solution (i.e.,

the architecture of the design) is isomorphic to the

structure of the problem. The solution molecule has

Req1
Req2

Req3

Req4

Req5

2D—Two dimensional
Req—Requirement

Figure 4.
Model of the problem network, showing a convenient
2D representation.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 83

84 Bell Labs Technical Journal DOI: 10.1002/bltj

the same spatial structure as the problem molecule,

although they do not contain and use the same kinds

of atoms: problem atoms are requirements; solution

atoms are components. Problem atoms are linked

together because they share the same concepts and

address the same requirements; solution atoms are

linked together because they share or exchange the

same data. However, the network that links the require-

ments together contains the same paths as the net-

work of the solution.

Having posed these assertions, the problem now

consists of finding the components whose semantic

distance is the shortest from the semantic atoms of

requirements, and organizing these components in

order to constitute the solution molecule, i.e., the

architecture of the application that will suitably solve

the problem expressed in the specification document.

To build this organization, we will apply the fol-

lowing process:

1. Find the components that cover the requirements

by using the semVector approach; this will build a

list of components, not yet linked together.

Figure 5 illustrates this step.

2. Replicate the structure of the problem molecule

inside the components list using solution atoms

instead of problem atoms, i.e., by attaching to the

corresponding components the links between

the requirements they fulfill. This will build a

rough version of the solution molecule, as illus-

trated in Figure 6.

3. Optimize this primary version in order to deter-

mine the best structure for the solution molecule.

This will become the final architecture for the

application.

The optimization process will use the semantic

tags attached to the data descriptions of the compo-

nents’ operations to determine and optimize the

interaction between components. The final result of

this process is an interaction diagram showing

the coupling and interdependencies between the

components.

Replicating the requirements links inside the

component structure associates the components in

the same way the requirements are associated in the

specification; but of course these associations are not

all valid. The fact that two requirements share the

same concepts does not necessarily imply that the two

corresponding components have an interaction

together. The role of the optimization process is to

keep only the most useful of the links inherited from

the problem molecule, i.e., the associations corre-

sponding to actual data exchanges between the two

{38, 31, 15, 7, 0}

{40, 32, 15, 7, 0, 0}
Comp1

Comp2

Comp3

{52, 44, 43, 37, 0, 0}

{50, 46, 41, 39, 0}

{38, 36, 19, 7, 0, 0, 0}

{36, 28, 17, 12, 0, 0}

Comp—Component
Req—Requirement

Comp4

Req3

Req2

Req1

Figure 5.
Using the semVector approach to determine which
components fulfill which requirements.

Comp—Component
Req—Requirement

Req1

Req2

Req3

Comp1

Comp2

Comp3

Comp4

Figure 6.
Replicating the problem molecule structure inside the
components list to get an initial version of the solution
molecule.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 84

DOI: 10.1002/bltj Bell Labs Technical Journal 85

components where the output of component 1

(Comp1) is an input for Comp2 or inversely.

Optimizing the Solution Network
The role of the optimization process is to deter-

mine the actual connections between the components

in terms of actual data exchanges. To determine these

connections automatically, we use the semantic tags

added as semantic metadata to the inputs and output

of the components’ operations [12].

If these semantic annotations are suitably chosen

and set, the components can be connected and their

connectivity can be formally expressed. For example,

if the output of Comp1.operation_A() semantically

fits with the input of Comp2.operation_B(), then

Comp1 can be connected to Comp2 through the link

“output of A” to “input of B,” and we are authorized

to write something like:

out_A � Comp1.operation_A(A_parameters);

out_B � Comp2.operation_B(out_A);

or, more directly:

out_B � Comp2.operation_B(Comp1.oper-

ation_A(A_parameters));

This means the two connected data have the

same semantic “dimension”: i.e., they semantically fit

each other—they are process-compatible; they share

not only the same data type, but the same nature of

data. This semantic data type is expressed by the

semTag, similar to an Unified Modeling Language

(UML) tagged value [18] and attached to the inputs

and outputs within the semCards.

Here, a question can be asked: even if we can

connect the output of Comp1 to the input of Comp2

because they semantically fit each other (for example,

Comp1 produces a text and Comp2 consumes a text),

how can we be sure that Comp2 is really waiting for

the output of Comp1, instead of the output of Comp4,

for instance, which is another component producing

a text? In fact, we can be sure of the Comp1–Comp2

connectivity because the interactions are built by

following the links that are present in the solution

molecule as shown in Figure 6. Even if Comp4

produces a text, it is not directly linked to Comp2;

consequently, there is no reason to try to combine

their inputs to outputs.

SemTags ensure the consistency of component

interfaces, and for this reason they are important

elements for optimizing component interactions. For

example, let us suppose Comp1.operation_A()

provides a text, and Comp2.operation_B() is the

operation translate() of a component

Translator; it makes sense to translate a text; thus

the output of Comp1.operation_A() has to fit

with the input of Translator.translate(). But

suppose Comp1. operation_A() provides the

stock symbol for a given company. This symbol and

the text taken as input by Translator.trans-

late() can have the same data type (string). They

are not semantically equivalent, because it does not

make sense to try to translate a stock symbol.

Therefore, the semantic information attached to

these two data must be different, and consequently

the two operations, and the two components, are

not connectable.

Panel 3 provides an example of the semCard of

the component translator, showing the useful semTags.

When components are Web services, for exam-

ple, semCard descriptions can be generated from the

Web Service Description Language (WSDL) [20]. But

in order to set the semantic tags automatically, a spe-

cific semantic module can be used.

This module analyzes the names and types of the

operation parameters, as described in WSDL, and

searches for semantic correspondences in a specific

ontology [12].

This ontology contains the links between the

semantics of the current names and types of input

and output data as they are usually used by pro-

grammers, and the corresponding semantic tags.

For example, data named “text” or “content” or

“translated_page” or “description” with the type

“string” will have the semantic tag “text” because the

data has the “dimension” of a text. Data named “date”

or “current_date,” with a type “Date” or “String,” will

have the semantic tag “date.”

This ontology can be expressed as a simple corre-

spondence table, as shown in Table II.
Such an ontology is easy to build and to improve

progressively by analyzing the contents of published

components interfaces that show the practice of pro-

grammers and then by summarizing their good usages.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 85

86 Bell Labs Technical Journal DOI: 10.1002/bltj

One of the requirements of a targeted application

is “to produce a translated version of a news feed.”

This requirement is expressed in natural language in

the specification, and the semVector plus component-

discovery approach has allocated two components to

this requirement: a Really Simple Syndication (RSS)-

accessor component and a translator component. The

corresponding semCards for these components are

shown in Panel 2 and Panel 3.

The RSS component is designed to gather informa-

tion from RSS feeds accessible via the Internet, and its

interface contains two operations: getAllTitles()

obtains all the main titles of the feed for a given URL,

and getDescriptionOfTitle() obtains the text of

the short article for this title.

The translator component is a classical one whose

operation translate() transforms a text (given as

an input parameter) written in a given source lan-

guage (input parameter) into a translated text (out-

Data name Type Semantic tag

text, content, page, String text
description, ...

date, current_date, ... String / Date date

phone_number, String telephone_
mobile_phone, ... number

lang, language, dest_ String language
lang, srce_ lang, ...

postal_code, zip_code, String zip_code
city_code, ...

...

Table II. Ontology for automatically setting semantic
tags within semantic cards.

Panel 3. The SemCard of the Component Translator, Showing the Useful SemTags

�se mCard�
�URL�http://xxx.xx.xxx.x/components/Translation/Translator.asmx�/URL�
�component name�”Translator”�

�domains�
�domain name�”Translation”�

�concepts list�”translation, version, language, source language, target language, result” /�
�/domain�
�domain name�”Text”�

�concepts list�”text, chapter, paragraph, sentence, phrase, word, language” /�
�/domain�

�/domains�
�operation name�”translate”�

�inputs�
�input name�”text_to_translate” concept�”Text#Text” semtag�”text” /�
�input name�”source_language” concept�”Translation#SourceLanguage”
semtag�”language” /�
�input name�”target_language” concept�”Translation#TargetLanguage” semtag�”language” /�
�/inputs�
�output name�”translated_text” concept�” Text#Text “ semtag�”text” /�
�goal�The goal of the operation is to provide a translated_text written in a given
target_language as a result of the translation of a given text_to_translate written in a
source_language�
�/goal�

�/operation�
�/component�

�/semCard�

Automating the Optimization of Solution Network
To describe the process that takes into account the

semantic tags in order to build an automatic orches-

tration of components, consider the following example.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 86

nectivities appear as shown in Figure 8, but not pre-

cisely enough to make a fully consistent composition.

Second, review the main output of the targeted

component assembly to determine which operations

can provide its input, and to iterate the process for

these operations—search for other operations that can

provide their inputs. Then, go back progressively from

the main output to the input data necessary to pro-

duce it, and, in the process, automatically assemble the

different operations by linking their outputs and inputs.

At the same time, the links are stored in a first

in, last out (FILO) stack under the form of pseudocode

expressing the operation calls. At the end of this

process, the content of the stack represents the correct

interactions between the components.

The main output of the component assembly is

given by the expression of the original requirement.

For our example, a “translated version” is desired: the

main output is a translated text, i.e., the output of the

operation Translator.translate(). We can push

this main output in the stack, expressed as the

“return” of the function represented by the targeted

component assembly:

translated_text � Translator.trans-

late(text_to_translate, src_lang,

dest_lang);

return translated_text;

DOI: 10.1002/bltj Bell Labs Technical Journal 87

put) written in a destination language (input parame-

ter).

Now, the problem is automatically and logically to

assemble these two components, i.e., their three oper-

ations, as shown in Figure 7, in order to fulfill the

original requirement: provide a translated version of

a news feed.

First, consider semantic tags as inputs and outputs

of operations, instead of data. Then, some possible con-

RSS.getAllTitlesadr_site List of titles

RSS.getDescriptionOfTitle
site_address

Title

Description

Translator.translate translated_text

text_to_translate

src_lang

dest_lang

RSS—Really Simple Syndication

Figure 7.
How to automatically assemble three operations.

RSS.getAllTitlesURL Title

RSS.getDescriptionOfTitle
URL

Title

Text

Translator.translate

Text

Language

Language
Text

RSS—Really Simple Syndication
URL—Uniform resource locator

Figure 8.
Two possible connections—indicated by large arrows—appear by considering semantic tags instead of
data names.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 87

88 Bell Labs Technical Journal DOI: 10.1002/bltj

Refer again to the inputs of this operation, whose

semantic tags are “language,” “language” and “text.”

Data with a semantic tag “text” is provided by the

operation RSS.getDescriptionOfTitle().

This operation then can be connected to

Translator.translate(). We can add the call to

the operation RSS.getDescriptionOfTitle() in

the stack, linking with Translator.translate()

through the name of the exchanged parameter:

text_to_translate � RSS.getDescrip-

tionOfTitle(site_address, title);

translated_text � Translator.trans-

late(text_to_translate, src_lang, dest_

lang);

return translated_text;

Now, refer to the inputs of RSS.getDescription

OfTitle(), whose semantic tags are “URL” and “title.”

Data with a semantic tag “title” is provided by the oper-

ation RSS.getAllTitles().

So, we can also connect these two operations by

pushing a new operation call in the stack:

titles � RSS.getRSSTitles(adr_site);

text_to_translate � RSS.getDescri-

ptionOfTitle(site_address, title);

translated_text � Translator.trans-

late(text_to_translate, src_lang,

dest_lang);

return translated_text;

Having used and connected all the components

allocated to the original requirement, the stack now

contains the general texture of the component assem-

bly, under the form of a nearly executable pseudocode.

However, this pseudocode must be refined before it

can be executed:

• The data types must be taken into account. For

example, RSS.getAllTitles() returns an

array of strings and not a single string.

• The names of some parameters can be solved

through their semantics, i.e., with the help of their

semTags. For instance, “adr_site” and “site_address”

recover the same concept and have the same

semTag.

• Some other parameters can be solved with useful

information contained in the original require-

ment. For example, if the requirement specifies a

French translation, then the parameter “dest_lang”

of the operation Translator.translate()

has to be set to French.

• Some additional components or operations can

be used to solve other parameters. For example,

the parameter “src_lang” can be set by using a

utility component, a “language finder,” to deter-

mine the source language of a given text automat-

ically, or an operation getSourceLanguage()

on the RSS feed component.

Panel 4 provides an example of a specific mod-

ule, whose detailed description is outside the scope

of this paper, which makes these refinements in order

to complete the pseudocode.

This pseudocode can finally be transformed into

an executable Java* file, for example, in order to test the

validity of the component assembly produced by the

optimization process.

The final interaction diagram between the com-

ponents obtained as a result of the optimization

Panel 4. Refined Pseudo-Code

Vector ComponentAssembly(String site_address) {
Vector result;
titles � RSS.getAllTitles(site_address);
foreach title in titles {

text_to_translate � RSS.getDescriptionOfTitle(site_address, title);
source_lang � LanguageFinder.getLanguage(text_to_translate);
translated_text � Translator.Translate(text_to_translate, source_lang, “french”);

result.add(title � translated_text);
}
return result;

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 88

DOI: 10.1002/bltj Bell Labs Technical Journal 89

process can be considered as a first draft of the design

of the future application and is shown in Figure 9.

Our intent is to deliver a draft with a quasi-executable

pseudocode allowing validation tests of the architec-

ture of the future application.

Conclusion
This paper has described an application of a nat-

ural language (NL) technology combined with a

component-composition optimization process that

enables automatic construction of software applica-

tions. We have presented an original but partly oper-

ational process to determine the meaning of NL text,

and to use this meaning to find the right components

to fulfill the original NL-expressed requirements of

the application’s specification. This process leads to

an initial architectural structure of the targeted appli-

cation, and we have presented a complementary

process to optimize this structure to obtain an accept-

able and testable draft of the application design.

The advantages of the proposed process are

numerous: it is performed rapidly and fully automat-

ically, it works directly from the original requirements

of the application, and it delivers a quasi-executable

pseudocode as a useful subproduct allowing valida-

tion testing of the architecture of the future applica-

tion. Moreover, the traceability between the

requirements and the architecture is certain, as

another subproduct of the process.

Still in progress, the process has to be improved

and refined. An important part of future work

involves more complete and rigorous experimenta-

tion, validation, and perhaps tuning.

Acknowledgments
The author would like to acknowledge the contri-

butions of the following present members of the

Villarceaux Research and Innovation IP

Communication Applications project’s IMS and Web

Services (R&I-ICA-IWS) team: Fabien Balageas, Gérard

Burnside, Olivier Le Berre, Philippe Jabaud, Patrick

Fontaine for their useful comments, and Rick Hull,

Ryan Skraba, anonymous reviewers, and Gail Burton-

Dufay for their useful rereading and text improvements.

*Trademarks
Java is a trademark of Sun Microsystems Inc.

References
[1] G. Booch, R. Maksimchuk, M. Engle, B. Young,

J. Conallen, and K. Houston, Object-Oriented
Analysis and Design with Applications, 3rd ed.,
Addison-Wesley, Upper Saddle River, NJ, 2007.

[2] F. Bordeleau and M. Hermeling, “Model-Driven
Development for Component-Based Application
Portability,” COTS J., Aug. 2005, �http://
www.cotsjournalonline.com/home/article.
php?id�100379�.

[3] T. Chusho, H. Ishigure, N. Konda, and T. Iwata,
“Component-Based Application Development on
Architecture of a Model, UI and Components,”
Proc. 7th Asia-Pacific Software Engineering Conf.
(APSEC ‘00) (Singapore, 2000), pp. 349–353.

[4] C. Corley and R. Mihalcea, “Measuring the
Semantic Similarity of Texts,” Proc. ACL
Workshop on Empirical Modeling of Semantic
Equivalence and Entailment (ACL ‘05) (Ann
Arbor, MI, 2005), pp. 13–18.

getAllTitles

getDescriptionOfTitle

Translate

Translator

RSS

RSS—Really Simple Syndication

Figure 9.
Part of the final interaction diagram showing the
assembly of the component translator and RSS.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 89

90 Bell Labs Technical Journal DOI: 10.1002/bltj

[5] D. A. Evans and C. Zhai, “Noun-Phrase Analysis
in Unrestricted Text for Information Retrieval,”
Proc. 34th Annual Meeting of the Assoc. for
Computational Linguistics (ACL ‘96) (Santa
Cruz, CA, 1996), pp. 17–24.

[6] N. Guarino, C. Masolo, and G. Vetere,
“OntoSeek: Content-Based Access to the Web,”
IEEE Intelligent Syst., 14:3 (1999), 70–80.

[7] R. Guha, R. McCool, and E. Miller, “Semantic
Search,” Proc. 12th Internat. Conf. on World
Wide Web (WWW ‘03) (Budapest, Hung.,
2003), pp. 700–709.

[8] H. Kaiya and M. Saeki, “Ontology-Based
Requirements Analysis: Lightweight Semantic
Processing Approach,” Proc. 5th Internat. Conf.
on Quality Software (QSIC ‘05) (Melbourne,
Austral., 2005), pp. 223–230.

[9] S. Khaitan, K. Verma, R. K. Mohanty, and
P. Bhattacharyya, “Exploiting Semantic
Proximity for Information Retrieval,” Proc.
Workshop on Cross Lingual Inform. Access, 20th
Internat. Joint Conf. on Artificial Intelligence
(IJCAI ‘07) (Hyderabad, India, 2007).

[10] M. Kirtland, Designing Component-Based
Applications, Microsoft Press, Redmond, WA,
1998.

[11] P. Larvet, Analyse des Systémes: De l’Approche
Fonctionnelle à l’Approche Objet, InterEditions,
Paris, 1994.

[12] P. Larvet, “Composing Automatically Web
Services Through Semantic Tags,” Proc.
19th Internat. Conf. on Software and Syst.
Engineering and Their Applications (ICSSEA
‘06) (Paris, Fr., 2006).

[13] J. Mayfield and T. Finin, “Information Retrieval
on the Semantic Web: Integrating Inference
and Retrieval,” Proc. Semantic Web Workshop,
26th Internat. ACM SIGIR Conf. on Res. and
Dev. in Inform. Retrieval (SIGIR ‘03) (Toronto,
Can., 2003).

[14] S. Narayanan and S. A. McIlraith, “Simulation,
Verification and Automated Composition of
Web Services,” Proc. 11th Internat. Conf. on
World Wide Web (WWW ‘02) (Honolulu, HI,
2002), pp. 77–88.

[15] P. Patel-Schneider and J. Siméon, “The Yin/Yang
Web: XML Syntax and RDF Semantics,” Proc.
11th Internat. Conf. on World Wide Web
(WWW ‘02) (Honolulu, HI, 2002), pp. 443–453.

[16] P. F. Patel-Schneider and D. Fensel, “Layering
the Semantic Web: Problems and Directions,”
Proc. 1st Internat. Semantic Web Conf. (ISWC
‘02) (Sardinia, It., 2002), published in Lecture

Notes in Comput. Sci. (LNCS 2342) (I. Horrocks
and J. Hendler, eds.), Springer, Berlin,
Heidelberg, New York, 2002, pp. 16–29.

[17] R. Reiter, Knowledge in Action: Logical
Foundations for Specifying and Implementing
Dynamical Systems, MIT Press, Cambridge,
MA, 2001.

[18] J. Rumbaugh, I. Jacobson, and G. Booch, The
Unified Modeling Language Reference Manual,
Addison-Wesley, Reading, MA, New
York, 1999.

[19] M. Sjachyn and L. Beus-Dukic, “Semantic
Component Selection—SemaCS,” Proc. 5th
Internat. Conf. on Commercial-Off-the-Shelf
(COTS)-Based Software Syst. (ICCBSS ‘06)
(Orlando, FL, 2006), pp. 83–89.

[20] World Wide Web Consortium, “Web Services
Description Language (WSDL) 1.1,” W3C Note,
Mar. 15, 2001, �http://www.w3.org/TR/wsdl�.

[21] World Wide Web Consortium, “OWL Web
Ontology Language: Overview,” W3C
Recommendation., Feb. 10, 2004, �http://
www.w3.org/TR/owl-features/�.

[22] World Wide Web Consortium, “OWL Web
Ontology Language: Semantics and Abstract
Syntax,” W3C Rec., Feb. 10, 2004, �http://www.
w3.org/TR/2004/REC-owl-semantics-
20040210/�.

[23] World Wide Web Consortium, “OWL-S:
Semantic Markup for Web Services,” W3C
Member Submission, Nov. 22, 2004,
�http://www.w3.org/Submission/2004/
SUBM-OWL-S-20041122/�.

[24] H. Zhuge, “Semantic Component Networking:
Toward the Synergy of Static Reuse and
Dynamic Clustering of Resources in the
Knowledge Grid,” J. Syst. and Software, 79:10
(2006), 1469–482.

(Manuscript approved April 2008)

PHILIPPE LARVET is an engineer and technical
expert at the Alcatel-Lucent Bell Labs
Research and Innovation Center in
Villarceaux, France. His research topics
include semantic definitions of Web
services, model-driven application

development, and natural language processing. Prior
to his current assignment, he worked on introducing
object technologies on E10 projects, and on knowledge
management by developing tools and procedures to
capture expertise and to enrich lexical dictionaries
included in Alcatel’s documentation system for

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 90

DOI: 10.1002/bltj Bell Labs Technical Journal 91

the Switching & Routing Division (SRD). Previously, he
worked in several industrial companies as a software
engineering expert in the scope of real-time and
embedded systems, on numerous projects in object
technologies at the level of specification and design.
He is the author of several publications, among them
two books, one regarding expert systems, and another
covering systems analysis from the functional to the
object-oriented approach.◆

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 91

Author Query

AQ1: Panels 2, 3, and 4: Please confirm that the indentations are as you want
them to appear in the journal.

BLTJ132_20304.qxd 6/16/08 10:25 PM Page 92

